Циклическая частота. Основные формулы по физике - колебания и волны Циклическая частота изменения ускорения

Таким образом, полная энергия гармонического колебания постоянна и пропорциональна квадрату амплитуды смещения. Это – одно из характерных свойств гармонических колебаний. Здесь постоянный коэффициент k в случае пружинного маятника означает жёсткость пружины, а для математического маятника k=mgH. В обоих случаях коэффициент k передаётся параметрами колебательной системы.

Полная энергия механической колебательной системы состоит из кинетической и потенциальной энергий и равна максимальному значению любой из этих двух составляющих:

Следовательно, полная энергия колебаний прямо пропорциональна квадрату амплитуды смещения или квадрату амплитуды скорости.

Из формулы:

можно определить амплитуду x m колебаний смещения:


Амплитуда смещения при свободных колебаниях прямо пропорциональна корню квадратному из энергии, сообщённой колебательной системе в начальный момент, когда систему выводили из состояния равновесия.


Кинематика механических свободных колебаний

1 Смещение, скорость, ускорение. Для нахождения кинематических характеристик (смещения, скорости и ускорения) свободных колебаний воспользуемся законом сохранения и превращения энергии, которой для идеальной механической колебательной системы записывается так:





Так как производная по времени φ " постоянна, то угол φ зависит от времени линейно:

Учитывая это можно записать:

x = x m sin ω 0 t, υ = x m ω 0 cos ω 0 t

Здесь величина

есть амплитуда изменения скорости:

υ = υ m cos ω 0 t

Зависимость мгновенного значения ускорения a от времени t мы найдём как производную скорости υ по времени:

a = υ " = - ω 0 υ m sin ω 0 t,

a = -a m sin ω 0 t

знак «-» в полученной формуле указывает на то, что знак проекции вектора ускорения на ось, вдоль которой происходят колебания, противоположен знаку смещения x.

Итак, мы видим, что при гармонических колебаниях не только смещение, но и скорость и ускорение изменяются синусоидально.

2 Циклическая частота колебаний. Величина ω 0 называется циклической частотой колебаний. Так как функция sin α имеет по аргументу α период 2π, а гармонические колебания имеют по времени период T, то

Определение

Мерой колебательного движения служит циклическая (или угловая, или круговая) частотой колебаний .

Это скалярная физическая величина.

Циклическая частота при гармонических колебаниях

Пусть колебания совершает материальная точка. При этом материальная точка через равные промежутки времени проходит через одно и то же положение.

Самыми простыми колебаниями являются гармонические колебания. Рассмотрим следующую кинематическую модель. Точка M с постоянной по модулю скоростью ($v$) движется по окружности радиуса A. В этом случае ее угловую скорость обозначим ${\omega }_0$, эта скорость постоянна (рис.1).

Проекция точки $M$ на диаметр окружности (точка $N$), на ось X, выполняет колебания от $N_1$ до $N_2\ $и обратно. Такое колебание N ,будет гармоническим. Для описания колебания точки N необходимо записать координату точки N, как функцию от времени ($t$). Пусть при $t=0$ радиус OM образует с осью X угол ${\varphi }_0$. Через некоторый промежуток времени этот угол изменится на величину ${\omega }_0t$ и будет равен ${\omega }_0t+{\varphi }_0$, тогда:

Выражение (1) является аналитической формой записи гармонического колебания точки N по диаметру $N_1N_2$.

Обратимся к выражению (1). Величина $A$ - это максимальное отклонение точки, совершающей колебания, от положения равновесия (точки О - центра окружности), называется амплитудой колебаний.

Параметр ${\omega }_0$ - циклическая частота колебаний. $\varphi =({\omega }_0t+{\varphi }_0$) - фаза колебаний; ${\varphi }_0$ - начальная фаза колебаний.

Циклическую частоту гармонических колебаний можно определить как частную производную от фазы колебаний по времени:

\[{\omega }_0=\frac{?\varphi }{\partial t}=\dot{\varphi }\left(2\right).\]

При ${\varphi }_0=0$, уравнение колебаний (1) преобразуется к виду:

Если начальная фаза колебаний равна ${\varphi }_0=\frac{\pi }{2}$ , то получим уравнение колебаний в виде:

Выражения (3) и (4) показывают, что при гармонических колебаниях абсцисса $x$ - это функция синус или косинус от времени. При графическом изображении гармонических колебаний получается косинусоида или синусоида. Форма кривой определена амплитудой колебаний и величиной циклической частоты. Положение кривой зависит от начальной фазы.

Циклическую частоту колебаний можно выразить через период (T) колебаний:

\[{\omega }_0=\frac{2\pi }{T}\left(5\right).\]

Циклическую частоту с частотой $?$$?$ свяжем выражением:

\[{\omega }_0=2\pi \nu \ \left(6\right).\]

Единицей измерения циклической частоты в Международной системе единиц (СИ) является радиан, деленный на секунду:

\[\left[{\omega }_0\right]=\frac{рад}{с}.\]

Размерность циклической частоты:

\[{\dim \left({\omega }_0\right)=\frac{1}{t},\ }\]

где $t$ - время.

Частные случаи формул для вычисления циклической частоты

Груз на пружине (пружинный маятник - идеальная модель) совершает гармонические колебания с круговой частотой равной:

\[{\omega }_0=\sqrt{\frac{k}{m}}\left(7\right),\]

$k$ - коэффициент упругости пружины; $m$ - масса груза на пружине.

Малые колебания физического маятника будут приблизительно гармоническими колебаниями с циклической частотой равной:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(8\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника.

Примером физического маятника является математический маятник. Круговая частота его колебаний равна:

\[{\omega }_0=\sqrt{\frac{g}{l}}\left(9\right),\]

где $l$ - длина подвеса.

Угловая частота затухающих колебаний находится как:

\[\omega =\sqrt{{\omega }^2_0-{\delta }^2}\left(10\right),\]

где $\delta $ - коэффициент затухания; в случае с затуханием колебаний ${\omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание: Чему равна циклическая частота гармонических колебаний, если максимальная скорость материальной точки равна ${\dot{x}}_{max}=10\ \frac{см}{с}$, а ее максимальное ускорение ${\ddot{x}}_{max}=100\ \frac{см}{с^2}$?

Решение: Основой решения задачи станет уравнение гармонических колебаний точки, так как из условий, очевидно, что они происходят по оси X:

Скорость колебаний найдем, используя уравнение (1.1) и кинематическую связь координаты $x$ и соответствующей компоненты скорости:

Максимальное значение скорости (амплитуда скорости) равна:

Ускорение точки вычислим как:

Из формулы (1.3) выразим амплитуду, подставим ее в (1.5), получим циклическую частоту:

\[{\dot{x}}_{max}=A{\omega }_0\to A=\frac{{\dot{x}}_{max}}{{\omega }_0};;\ {\ddot{x}}_{max}=A{щ_0}^2=\frac{{\dot{x}}_{max}}{щ_0}{щ_0}^2\to щ_0=\frac{{\ddot{x}}_{max}}{{\dot{x}}_{max}}.\]

Вычислим циклическую частоту:

\[щ_0=\frac{100}{10}=10(\frac{рад}{с}).\]

Ответ: $щ_0=10\frac{{\rm рад}}{{\rm с}}$

Пример 2

Задание: На длинном невесомом стержне закреплены два груза одинаковой массы. Один груз находится на середине стержня, другой на его конце (рис.2). Система совершает колебания около горизонтальной оси, проходящей через свободный конец стрежня. Какова циклическая частота колебаний? Длина стержня равна $l$.

Решение: Основой для решения задачи является формула нахождения частоты колебаний физического маятника:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(2.1\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника. Масса маятника по условию задачи состоит из масс двух одинаковых шариков (масса одного шарика $\frac{m}{2}$). В нашем случае расстояние $a$ равно расстоянию между точками O и C (см. рис.2):

Найдем момент инерции системы из двух точечных масс. Относительно центра масс (если ось вращения провести через точку C), момент инерции системы ($J_0$) равен:

Момент инерции нашей системы относительно оси, проходящей через точку О найдем по теореме Штейнера:

Подставим правые части выражение (2.2) и (2.4) в (2.1) вместо соответствующих величин:

\[{\omega }_0=\sqrt{\frac{mg\frac{3}{4}l\ }{\frac{5}{8}ml^2}}=\sqrt{\frac{6g}{5l}}.\]

Ответ: ${\omega }_0=\sqrt{\frac{6g}{5l}}$

Является герц (русское обозначение: Гц ; международное: Hz ), названный в честь немецкого физика Генриха Герца .

Частота обратно пропорциональна периоду колебаний : ν = 1/T .

Частота 1 мГц (10 −3 Гц) 1 Гц (10 0 Гц) 1 кГц (10 3 Гц) 1 МГц (10 6 Гц) 1 ГГц (10 9 Гц) 1 ТГц (10 12 Гц)
Период 1 кс (10 3 с) 1 с (10 0 с) 1 мс (10 −3 с) 1 мкс (10 −6 с) 1 нс (10 −9 с) 1 пс (10 −12 с)

В природе известны периодические процессы с частотами от ~10 −16 Гц (частота обращения Солнца вокруг центра Галактики) до ~10 35 Гц (частота колебаний поля, характерная для наиболее высокоэнергичных космических лучей).

Видео по теме

Круговая частота

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей: ω = 360°ν .

Численно круговая частота равна числу колебаний (оборотов) за 2π секунд. Введение круговой частоты (в её основной размерности - радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная круговая частота колебательного LC-контура равна ω L C = 1 / L C , {\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как циклическая резонансная частота ν L C = 1 / (2 π L C) . {\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).} В то же время ряд других формул усложняется. Решающим соображением в пользу круговой частоты стало то, что множители 2 π {\displaystyle 2\pi } и 1 / 2 π {\displaystyle 1/2\pi } , появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении круговой (угловой) частоты.

В механике при рассмотрении вращательного движения аналогом круговой частоты служит угловая скорость .

Частота дискретных событий

Частота дискретных событий (например, частота следования импульсов) - физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий - секунда в минус первой степени (русское обозначение: с −1 ; международное: s −1 ). Частота 1 с −1 равна такой частоте дискретных событий, при которой за время 1 с происходит одно событие .

Частота вращения

Частота вращения - это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения - секунда в минус первой степени (с −1 , s −1 ), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

Единицы измерения

В системе СИ единицей измерения циклической частоты является герц (Гц, Hz). Единица была первоначально введена в 1930 году Международной электротехнической комиссией , а в 1960 году принята для общего употребления 11-й Генеральной конференцией по мерам и весам , как единица СИ. До этого в качестве единицы циклической частоты использовался цикл в секунду (1 цикл в секунду = 1 Гц ) и производные (килоцикл в секунду, мегацикл в секунду, киломегацикл в секунду, равные соответственно килогерцу, мегагерцу и гигагерцу).

Метрологические аспекты

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты следования импульсов - электронно-счётные и конденсаторные, для определения частот спектральных составляющих - резонансные и гетеродинные частотомеры, а также анализаторы спектра . Для воспроизведения частоты с заданной точностью используют различные меры - стандарты частоты (высокая точность), синтезаторы частот , генераторы сигналов и др. Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу .

Эталоны

Для поверки средств измерения частоты используются национальные эталоны частоты. В России к национальным эталонам частоты относятся:

  • Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 - находится во ВНИИФТРИ .
  • Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 - находится в СНИИМ (Новосибирск).

Вычисления

Вычисление частоты повторяющегося события осуществляется посредством учета количества появлений этого события в течение заданного периода времени . Полученное количество делится на продолжительность соответствующего временного отрезка. К примеру, если на протяжении 15 секунд произошло 71 однородное событие, то частота составит

ν = 71 15 s ≈ 4.7 Hz {\displaystyle \nu ={\frac {71}{15\,{\mbox{s}}}}\approx 4.7\,{\mbox{Hz}}}

Если полученное количество отсчетов невелико, то более точным приемом является измерение временного интервала для заданного числа появлений рассматриваемого события, а не нахождение количества событий в пределах заданного промежутка времени . Использование последнего метода вводит между нулевым и первым отсчетом случайную ошибку, составляющую в среднем половину отсчета; это может приводить к появлению средней ошибки в вычисляемой частоте Δν = 1/(2 T m ) , или же относительной погрешности Δν /ν = 1/(2v T m ) , где T m - временной интервал, а ν - измеряемая частота. Ошибка убывает по мере возрастания частоты, поэтому данная проблема является наиболее существенной для низких частот, где количество отсчетов N мало.

Методы измерения

Стробоскопический метод

Использование специального прибора - стробоскопа - является одним из исторически ранних методов измерения частоты вращения или вибрации различных объектов. В процессе измерения задействуется стробоскопический источник света (как правило, яркая лампа, периодически дающая короткие световые вспышки), частота работы которого подстраивается при помощи предварительно откалиброванной хронирующей цепи. Источник света направляется на вращающийся объект, а затем частота вспышек постепенно изменяется. Когда частота вспышек уравнивается с частотой вращения или вибрации объекта, последний успевает совершить полный колебательный цикл и вернуться в изначальное положение в промежутке между двумя вспышками, так что при освещении стробоскопической лампой этот объект будет казаться неподвижным. У данного метода, впрочем, есть недостаток: если частота вращения объекта (x ) не равна частоте строба (y ), но пропорциональна ей с целочисленным коэффициентом (2x , 3x и т. п.), то объект при освещении все равно будет выглядеть неподвижным.

Стробоскопический метод используется также для точной настройки частоты вращения (колебаний). В этом случае частота вспышек фиксирована, а изменяется частота периодического движения объекта до тех пор, пока он не начинает казаться неподвижным.

Метод биений

Близким к стробоскопическому методу является метод биений . Он основан на том, что при смешивании колебаний двух частот (опорной ν и измеряемой ν" 1 ) в нелинейной цепи в спектре колебаний появляется также разностная частота Δν = | νν" 1 |, называемая частотой биений (при линейном сложении колебаний эта частота является частотой огибающей суммарного колебания). Метод применим, когда более предпочтительным является измерение низкочастотных колебаний с частотой Δf . В радиотехнике этот метод также известен под названием гетеродинного метода измерения частоты. В частности, метод биений используется для точной настройки музыкальных инструментов. В этом случае звуковые колебания фиксированной частоты (например, от камертона), прослушиваемые одновременно со звуком настраиваемого инструмента, создают периодическое усиление и ослабление суммарного звучания. При точной настройке инструмента частота этих биений стремится к нулю.

Применение частотомера

Высокие частоты обычно измеряются при помощи частотомера . Это электронный прибор , который оценивает частоту определенного повторяющегося сигнала и отображает результат на цифровом дисплее или аналоговом индикаторе. Дискретные логические элементы цифрового частотомера позволяют учитывать количество периодов колебаний сигнала в пределах заданного промежутка времени, отсчитываемого по эталонным кварцевым часам . Периодические процессы, которые не являются по своей природе электрическими (такие, к примеру, как вращение оси , механические вибрации или звуковые волны), могут быть переведены в периодический электрический сигнал при помощи измерительного преобразователя и в таком виде поданы на вход частотомера. В настоящее время приборы этого типа способны охватывать диапазон вплоть до 100 Гц; этот показатель представляет собой практический потолок для методов прямого подсчёта. Более высокие частоты измеряются уже непрямыми методами.

Непрямые методы измерения

Вне пределов диапазона, доступного частотомерам, частоты электромагнитных сигналов нередко оцениваются опосредованно, с помощью гетеродинов (то есть частотных преобразователей). Опорный сигнал заранее известной частоты объединяется в нелинейном смесителе (таком, к примеру, как диод) с сигналом, частоту которого необходимо установить; в результате формируется гетеродинный сигнал, или - альтернативно - биения , порождаемые частотными различиями двух исходных сигналов. Если последние достаточно близки друг к другу по своим частотным характеристикам, то гетеродинный сигнал оказывается достаточно мал, чтобы его можно было измерить тем же частотомером. Соответственно, в результате этого процесса оценивается лишь отличие неизвестной частоты от опорной, каковую следует определять уже иными методами. Для охвата ещё более высоких частот могут быть задействованы несколько стадий смешивания. В настоящее время ведутся исследования, нацеленные на расширение этого метода в направлении инфракрасных и видимо-световых частот (т. н. оптическое гетеродинное детектирование).

Примеры

Электромагнитное излучение

Полный спектр электромагнитного излучения с выделенной видимой частью

Видимый свет представляет собой электромагнитные волны , состоящие из осциллирующих электрических и магнитных полей, перемещающихся в пространстве. Частота волны определяет её цвет: 4×10 14 Гц - красный цвет , 8×10 14 Гц - фиолетовый цвет ; между ними в диапазоне (4...8)×10 14 Гц лежат все остальные цвета радуги. Электромагнитные волны, имеющие частоту менее 4×10 14 Гц , невидимы для человеческого глаза, такие волны называются инфракрасным (ИК) излучением . Ниже по спектру лежит микроволновое излучение и радиоволны . Свет с частотой выше, чем 8×10 14 Гц , также невидим для человеческого глаза; такие электромагнитные волны называются ультрафиолетовым (УФ) излучением . При увеличении частоты электромагнитная волна переходит в область спектра, где расположено рентгеновское излучение , а при ещё более высоких частотах - в область гамма-излучения .

Все эти волны, от самых низких частот радиоволн и до высоких частот гамма-лучей, принципиально одинаковы, и все они называются электромагнитным излучением. Все они распространяются в вакууме со скоростью света .

Другой характеристикой электромагнитных волн является длина волны . Длина волны обратно пропорциональна частоте, так что электромагнитные волны с более высокой частотой имеет более короткую длину волны, и наоборот. В вакууме длина волны

λ = c / ν , {\displaystyle \lambda =c/\nu ,}

где с - скорость света в вакууме. В среде, в которой фазовая скорость распространения электромагнитной волны c ′ отличается от скорости света в вакууме (c ′ = c/n , где n - показатель преломления), связь между длиной волны и частотой будет следующей:

λ = c n ν . {\displaystyle \lambda ={\frac {c}{n\nu }}.}

Ещё одна часто использующаяся характеристика волны - волновое число (пространственная частота), равное количеству волн, укладывающихся на единицу длины: k = 1/λ . Иногда эта величина используется с коэффициентом 2π , по аналогии с циклической и круговой частотой k s = 2π/λ . В случае электромагнитной волны в среде

k = 1 / λ = n ν c . {\displaystyle k=1/\lambda ={\frac {n\nu }{c}}.} k s = 2 π / λ = 2 π n ν c = n ω c . {\displaystyle k_{s}=2\pi /\lambda ={\frac {2\pi n\nu }{c}}={\frac {n\omega }{c}}.}

Звук

Свойства звука (механических упругих колебаний среды) зависят от частоты. Человек может слышать колебания с частотой от 20 Гц до 20 кГц (с возрастом верхняя граница частоты слышимого звука снижается). Звук с частотой более низкой, чем 20 Гц (соответствует ноте ми

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т. Единицы измерения периода соответствуют единицам времени. То есть в СИ - это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца. Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний.

Частота собственных колебаний рассчитывается по формуле:

Частота собственных колебаний зависит от свойств материала и массы груза. Чем больше жесткость пружины, тем больше частота собственных колебаний. Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний :

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.