Усилитель с «пентодным» звучанием. Усилитель звука на полевых транзисторах Усилитель hi-fi на комплементарных полевых транзисторах

Схема усилителя приведена на рис.1. Через RC-цепочку фильтра нижних частот сигнал попадает на комплементарный входной каскад (Т1, Т2, ТЗ, Т4). При желании можно увеличить емкость разделительного конденсатора С1, однако делать это имеет смысл только в случае очень низкой граничной частоты звукоизлучающей системы. В эмиттерную цепь входного каскада включен линеаризующий резистор R11 на 100 Ом, к эмиттерам же подключена общая отрицательная обратная связь величиной около 30 дБ. "Внутри" каскада, между коллектором "нижнего" транзистора (Т2) и эмиттером "верхнего" (ТЗ) действует вторая ("внутренняя") петля обратной связи величиной около 18 дБ. Это означает, что за исключением транзисторов Т1, Т2, обе петли оказывают одинаковое действие на все остальные каскады.

крупнее

Через эмиттерный повторитель (основная роль которого - сдвиг уровня постоянного напряжения) сигнал с входного каскада подается на усилитель напряжения(Т7,Т8). В эмиттерах транзисторов здесь снова установлены линеаризующие резисторы. Коллекторный ток этих транзисторов протекает через цепи, которые регулируют ток покоя полевых транзисторов оконечного усилителя. Остановимся на мгновение! Температурный коэффициент Kт полевых транзисторов (т.е. отношение напряжение на затворе/ток стока) близок к нулю. Для малых токов он небольшой и отрицательный, для больших - небольшой и положительный. Перемена знака происходит для мощных транзисторов при токе около 100 мА. Оконечный усилитель работает при токе покоя 100 мА. Полевые транзисторы "раскачиваются" через транзисторные эмиттерные повторители, у которых, как известно, Кт положительный. Поэтому необходимо использовать такую предварительно смещенную цепь, которая компенсировала бы температурную зависимость. Температурную зависимость эмиттерных повторителей компенсируют диоды D3 и D4. Ток покоя полевых транзисторов оконечного усилителя устанавливается потенциометром Р на уровне порядка 100 мА. В цепях затворов полевых транзисторов установлены резисторы (R29, R30), препятствующие самовозбуждению. Цепь, состоящая из диодов и стабилитронов (D5...D8), предотвращает появление опасного для полевых транзисторов напряжения затвор-исток. В цепи истока полевых транзисторов имеются резисторы (R31 и R32) номиналом на 0,47 Ом. Из них R32 отмечен звездочкой - в опытном образце его значение было равно нулю. Этот резистор сглаживает возможные различия в крутизне полевых транзисторов. Как правило, включение R32 не оказывает катастрофического действия на усиление, можно ожидать увеличения искажений на величину порядка 20...30%. Как обычно, RCL-звено на выходе усилителя защищает его от самовозбуждения при чрезвычайно высоком реактивном импедансе нагрузки. Сопротивление Rx в цепи эмиттера Т1 на входе усилителя используется для точной балансировки усилителя. Если взять R13 и R14 одинаковой величины (6,8 кОм), а Rx закоротить, то смещение выхода будет вполне удовлетворительным. Но если необходимо его улучшить, то R13 уменьшается до 6,2 кОм, а вместо Rx временно подключается потенциометр на 1 кОм. После примерно 30 мин "прогрева" усилителя, этим потенциометром устанавливается на выходе уровень напряжения, равный нулю. Сопротивление потенциометра измеряется, и в качестве Rx припаивается резистор с номиналом, подходящим ближе всего к измеренному. Как правило, при замене D1 или D2 возникает необходимость в замене Rx. Конденсатор С9 осуществляет частотную коррекцию усилителя. Он вызывает двойной эффект: осуществляет, с одной стороны, "запаздывающую" коррекцию при емкостной нагрузке коллекторов Т7 и Т8 и, с другой стороны, "опережающую", будучи подсоединенным не к земле, а к R21. Резистор R34 предотвращает возникновение двух различных петель заземления в том случае, когда два или более УМЗЧ питаются от одного блока питания. Земля на входе соединяется с металлическим корпусом или шасси и с предусилителем, а другие земли представляющие собой, по сути дела, возвратные провода для токов нуля, соединяются по отдельности с нулевой точкой блока питания.


крупнее

Монтаж. Усилитель собран на двусторонней печатной плате, чертеж которой показан на рис.2-3. Со стороны деталей имеется сплошная фольга заземления. Зенковка в местах "входа" выводов деталей в плату предотвращает замыкания. Соединяющиеся с землей выводы деталей припаиваются непосредственно (без отверстий) к фольге заземления. На сборочном чертеже эти точки помечены черным цветом. Два оконечных полевых транзистора устанавливаются на уголки из алюминия, которые соединяются с радиатором, создавая тепловой мостик, и оба крепятся к плате. Их необходимо изолировать от уголков и платы. Имеющийся в цепи эмиттера резистор "висит в воздухе", поскольку установлен навесным монтажом. Резисторы R29 и R30 для укорачивания выводов припаиваются со стороны дорожек платы. Теплоотводы не должны образовывать с "нулевой" фольгой "ложную землю", поэтому "нулевая" фольга прерывается глубокой царапиной, идущей параллельно теплоотводам. Для нормального охлаждения полевых транзисторов достаточно охлаждающей поверхности около 400 см 2 . Транзисторы Т9 и Т10 крепятся к "нулевой" фольге через тонкую слюдяную пластину. Здесь очень легко может возникнуть короткое замыкание, поэтому монтаж нужно тщательно проверить омметром. Катушка L1 диаметром 10 мм состоит из примерно 15 плотно намотанных витков провода диаметром 0,5 мм (без сердечника). Резистор R33 расположен по оси L1, и его выводы спаиваются вместе с выводами катушки, а затем крепятся к плате. Три провода, идущие к блоку питания, скручиваются вместе. Два провода, ведущие к динамику, также скручиваются в отдельный жгут (независимо от предыдущих). Поскольку здесь текут большие токи, их магнитные поля могут значительно увеличить искажения - главным образом, на высоких частотах. Скручивание проводов вместе приводит к тому, что магнитные поля токов, текущих в противоположных направлениях, взаимно уничтожаются. Нулевая точка блока питания и вывод динамика не соединяются с корпусом, и идущие к ним провода не укладываются вместе с другими проводами.

Блок питания. Схема блока питания - самая простая (рис.4). Трансформатор, имеющий отвод от середины вторичной обмотки, питает двухполупериодный выпрямитель, состоящий из двух групп по 2 диода. Сглаживание пульсации осуществляют конденсаторы емкостью не менее 4700 мкФ (40 В). Такой блок может обеспечить питанием два оконечных усилителя.

Верхний предел напряжения вторичной обмотки трансформатора определяется типом использованных транзисторов Т7, Т8. В случае использования пары ВС 546/556, напряжение питания (в отсутствие сигнала) не должно превосходить 30...32 В. Более высокое напряжение эти транзисторы "переносят плохо". При напряжении питания ±30 В можно использовать трансформатор 220/2х22,5 В или 230/2х24 В. Усилитель с напряжением питания ±30 В может отдать в нагрузку мощность около 24 Вт (на 8 Ом). Полевые транзисторы, используемые в оконечном усилителе, очень дорогие. За цену одного такого транзистора можно приобрести весь остальной набор деталей. Невольно возникает вопрос- компенсируются ли излишки расходов ожидаемым улучшением качества. Ответ на этот вопрос зависит от многих обстоятельств, поскольку:

речь идет о субъективно воспринимаемых искажениях, поэтому звуковые ощущения у разных людей будут разными;

восприятие искажений зависит от воспроизводимой музыки. При воспроизведении чисто "авторской" электронной музыки не имеет смысла говорить об искажениях, ибо невозможно узнать, были или нет эти искажения в исходном материале;

проблематично воспроизведение музыки, поступающей с CD. По мнению "критических ушей" и автора, эта музыка имеет специфическую окраску. Воспроизведение же с хорошей аналоговой пластинки или непосредственно с концерта дает превосходное качество.

Перевод А. Бельского. Radiotechnika, № 7, 96

Схема усилителя приведена на рис.1. Через RC-цепочку фильтра нижних частот сигнал попадает на комплементарный входной каскад (Т1, Т2, ТЗ, Т4). При желании можно увеличить емкость разделительного конденсатора С1, однако делать это имеет смысл только в случае очень низкой граничной частоты звукоизлучающей системы. В эмиттерную цепь входного каскада включен линеаризующий резистор R11 на 100 Ом, к эмиттерам же подключена общая отрицательная обратная связь величиной около 30 дБ. “Внутри” каскада, между коллектором “нижнего” транзистора (Т2) и эмиттером “верхнего” (ТЗ) действует вторая (“внутренняя”) петля обратной связи величиной около 18 дБ. Это означает, что за исключением транзисторов Т1, Т2, обе петли оказывают одинаковое действие на все остальные каскады.

Рис.1.
Через эмиттерный повторитель (основная роль которого – сдвиг уровня постоянного напряжения) сигнал с входного каскада подается на усилитель напряжения(Т7,Т8). В эмиттерах транзисторов здесь снова установлены линеаризующие резисторы. Коллекторный ток этих транзисторов протекает через цепи, которые регулируют ток покоя полевых транзисторов оконечного усилителя. Остановимся на мгновение! Температурный коэффициент Kт полевых транзисторов (т.е. отношение напряжение на затворе/ток стока) близок к нулю. Для малых токов он небольшой и отрицательный, для больших – небольшой и положительный. Перемена знака происходит для мощных транзисторов при токе около 100 мА. Оконечный усилитель работает при токе покоя 100 мА. Полевые транзисторы “раскачиваются” через транзисторные эмиттерные повторители, у которых, как известно, Кт положительный. Поэтому необходимо использовать такую предварительно смещенную цепь, которая компенсировала бы температурную зависимость. Температурную зависимость эмиттерных повторителей компенсируют диоды D3 и D4. Ток покоя полевых транзисторов оконечного усилителя устанавливается потенциометром Р на уровне порядка 100 мА. В цепях затворов полевых транзисторов установлены резисторы (R29, R30), препятствующие самовозбуждению. Цепь, состоящая из диодов и стабилитронов (D5…D8), предотвращает появление опасного для полевых транзисторов напряжения затвор-исток. В цепи истока полевых транзисторов имеются резисторы (R31 и R32) номиналом на 0,47 Ом. Из них R32 отмечен звездочкой – в опытном образце его значение было равно нулю. Этот резистор сглаживает возможные различия в крутизне полевых транзисторов. Как правило, включение R32 не оказывает катастрофического действия на усиление, можно ожидать увеличения искажений на величину порядка 20…30%. Как обычно, RCL-звено на выходе усилителя защищает его от самовозбуждения при чрезвычайно высоком реактивном импедансе нагрузки. Сопротивление Rx в цепи эмиттера Т1 на входе усилителя используется для точной балансировки усилителя. Если взять R13 и R14 одинаковой величины (6,8 кОм), а Rx закоротить, то смещение выхода будет вполне удовлетворительным. Но если необходимо его улучшить, то R13 уменьшается до 6,2 кОм, а вместо Rx временно подключается потенциометр на 1 кОм. После примерно 30 мин “прогрева” усилителя, этим потенциометром устанавливается на выходе уровень напряжения, равный нулю. Сопротивление потенциометра измеряется, и в качестве Rx припаивается резистор с номиналом, подходящим ближе всего к измеренному. Как правило, при замене D1 или D2 возникает необходимость в замене Rx. Конденсатор С9 осуществляет частотную коррекцию усилителя. Он вызывает двойной эффект: осуществляет, с одной стороны, “запаздывающую” коррекцию при емкостной нагрузке коллекторов Т7 и Т8 и, с другой стороны, “опережающую”, будучи подсоединенным не к земле, а к R21. Резистор R34 предотвращает возникновение двух различных петель заземления в том случае, когда два или более УМЗЧ питаются от одного блока питания. Земля на входе соединяется с металлическим корпусом или шасси и с предусилителем, а другие земли представляющие собой, по сути дела, возвратные провода для токов нуля, соединяются по отдельности с нулевой точкой блока питания.

Монтаж. Усилитель собран на двусторонней печатной плате, чертеж которой показан на рис.2-3. Со стороны деталей имеется сплошная фольга заземления. Зенковка в местах “входа” выводов деталей в плату предотвращает замыкания. Соединяющиеся с землей выводы деталей припаиваются непосредственно (без отверстий) к фольге заземления. На сборочном чертеже эти точки помечены черным цветом. Два оконечных полевых транзистора устанавливаются на уголки из алюминия, которые соединяются с радиатором, создавая тепловой мостик, и оба крепятся к плате. Их необходимо изолировать от уголков и платы. Имеющийся в цепи эмиттера резистор “висит в воздухе”, поскольку установлен навесным монтажом. Резисторы R29 и R30 для укорачивания выводов припаиваются со стороны дорожек платы. Теплоотводы не должны образовывать с “нулевой” фольгой “ложную землю”, поэтому “нулевая” фольга прерывается глубокой царапиной, идущей параллельно теплоотводам. Для нормального охлаждения полевых транзисторов достаточно охлаждающей поверхности около 400 см2. Транзисторы Т9 и Т10 крепятся к “нулевой” фольге через тонкую слюдяную пластину. Здесь очень легко может возникнуть короткое замыкание, поэтому монтаж нужно тщательно проверить омметром. Катушка L1 диаметром 10 мм состоит из примерно 15 плотно намотанных витков провода диаметром 0,5 мм (без сердечника). Резистор R33 расположен по оси L1, и его выводы спаиваются вместе с выводами катушки, а затем крепятся к плате. Три провода, идущие к блоку питания, скручиваются вместе. Два провода, ведущие к динамику, также скручиваются в отдельный жгут (независимо от предыдущих). Поскольку здесь текут большие токи, их магнитные поля могут значительно увеличить искажения – главным образом, на высоких частотах. Скручивание проводов вместе приводит к тому, что магнитные поля токов, текущих в противоположных направлениях, взаимно уничтожаются. Нулевая точка блока питания и вывод динамика не соединяются с корпусом, и идущие к ним провода не укладываются вместе с другими проводами.
Блок питания. Схема блока питания – самая простая (рис.4). Трансформатор, имеющий отвод от середины вторичной обмотки, питает двухполупериодный выпрямитель, состоящий из двух групп по 2 диода. Сглаживание пульсации осуществляют конденсаторы емкостью не менее 4700 мкФ (40 В). Такой блок может обеспечить питанием два оконечных усилителя.

Рис.4.
Верхний предел напряжения вторичной обмотки трансформатора определяется типом использованных транзисторов Т7, Т8. В случае использования пары ВС 546/556, напряжение питания (в отсутствие сигнала) не должно превосходить 30…32 В. Более высокое напряжение эти транзисторы “переносят плохо”. При напряжении питания ±30 В можно использовать трансформатор 220/2х22,5 В или 230/2х24 В. Усилитель с напряжением питания ±30 В может отдать в нагрузку мощность около 24 Вт (на 8 Ом). Полевые транзисторы, используемые в оконечном усилителе, очень дорогие. За цену одного такого транзистора можно приобрести весь остальной набор деталей. Невольно возникает вопрос- компенсируются ли излишки расходов ожидаемым улучшением качества. Ответ на этот вопрос зависит от многих обстоятельств, поскольку:
— речь идет о субъективно воспринимаемых искажениях, поэтому звуковые ощущения у разных людей будут разными;
— восприятие искажений зависит от воспроизводимой музыки. При воспроизведении чисто “авторской” электронной музыки не имеет смысла говорить об искажениях, ибо невозможно узнать, были или нет эти искажения в исходном материале;
— проблематично воспроизведение музыки, поступающей с CD. По мнению “критических ушей” и автора, эта музыка имеет специфическую окраску. Воспроизведение же с хорошей аналоговой пластинки или непосредственно с концерта дает превосходное качество.

Related Posts

Предлагаемый вниманию читателей стереофонический усилитель мощности разработан для автомобильного кассетного проигрывателя, но, естественно, может быть использован и в носимой аппаратуре с напряжением питания 9…13 В. Усилитель содержит минимум деталей, прост…….

Многие радиолюбители слышали о красивом звучании, достигаемом с усилителями на лампах, но слышать от кого-то - это одно, а сделать и слушать самому - совсем другое дело. К тому же…….

Предлагаемый УМЗЧ (рис.1) построен на базе операционного усилителя КР544УД2. Параметры УМЗЧ Рабочий диапазон частот, Гц, не менее 15…30000 Нелинейность амплитудно-частотной характеристики, дБ, не более 2 Номинальная мощность на нагрузке: —…….

Было у меня когда-то время увлечения тотально прямонакальными схемами. Строго говоря, оно так и не прошло до сих пор, но приняло мягкую, компромиссную форму, когда я легко уживаюсь, например, с…….

Продолжаем тему маломощных усилителей на интегральных микросхемах. На сей раз, рассмотрим усилитель на микросхеме MAX9751. Чем примечательна эта микросхема? Ну, прежде всего – низким напряжением питания – 5 вольт, однополярное,…….


Схема усилителя приведена на рис.1. Через RC-цепочку фильтра нижних частот сигнал попадает на комплементарный входной каскад (Т1, Т2, ТЗ, Т4). При желании можно увеличить емкость разделительного конденсатора С1, однако делать это имеет смысл только в случае очень низкой граничной частоты звукоизлучающей системы. В эмиттерную цепь входного каскада включен линеаризующий резистор R11 на 100 Ом, к эмиттерам же подключена общая отрицательная обратная связь величиной около 30 дБ. "Внутри" каскада, между коллектором "нижнего" транзистора (Т2) и эмиттером "верхнего" (ТЗ) действует вторая ("внутренняя") петля обратной связи величиной около 18 дБ. Это означает, что за исключением транзисторов Т1, Т2, обе петли оказывают одинаковое действие на все остальные каскады.

Через эмиттерный повторитель (основная роль которого - сдвиг уровня постоянного напряжения) сигнал с входного каскада подается на усилитель напряжения(Т7,Т8). В эмиттерах транзисторов здесь снова установлены линеаризующие резисторы. Коллекторный ток этих транзисторов протекает через цепи, которые регулируют ток покоя полевых транзисторов оконечного усилителя. Остановимся на мгновение! Температурный коэффициент Kт полевых транзисторов (т.е. отношение напряжение на затворе/ток стока) близок к нулю. Для малых токов он небольшой и отрицательный, для больших - небольшой и положительный. Перемена знака происходит для мощных транзисторов при токе около 100 мА. Оконечный усилитель работает при токе покоя 100 мА. Полевые транзисторы "раскачиваются" через транзисторные эмиттерные повторители, у которых, как известно, Кт положительный. Поэтому необходимо использовать такую предварительно смещенную цепь, которая компенсировала бы температурную зависимость. Температурную зависимость эмиттерных повторителей компенсируют диоды D3 и D4. Ток покоя полевых транзисторов оконечного усилителя устанавливается потенциометром Р на уровне порядка 100 мА. В цепях затворов полевых транзисторов установлены резисторы (R29, R30), препятствующие самовозбуждению. Цепь, состоящая из диодов и стабилитронов (D5...D8), предотвращает появление опасного для полевых транзисторов напряжения затвор-исток. В цепи истока полевых транзисторов имеются резисторы (R31 и R32) номиналом на 0,47 Ом. Из них R32 отмечен звездочкой - в опытном образце его значение было равно нулю. Этот резистор сглаживает возможные различия в крутизне полевых транзисторов. Как правило, включение R32 не оказывает катастрофического действия на усиление, можно ожидать увеличения искажений на величину порядка 20...30%. Как обычно, RCL-звено на выходе усилителя защищает его от самовозбуждения при чрезвычайно высоком реактивном импедансе нагрузки. Сопротивление Rx в цепи эмиттера Т1 на входе усилителя используется для точной балансировки усилителя. Если взять R13 и R14 одинаковой величины (6,8 кОм), а Rx закоротить, то смещение выхода будет вполне удовлетворительным. Но если необходимо его улучшить, то R13 уменьшается до 6,2 кОм, а вместо Rx временно подключается потенциометр на 1 кОм. После примерно 30 мин "прогрева" усилителя, этим потенциометром устанавливается на выходе уровень напряжения, равный нулю. Сопротивление потенциометра измеряется, и в качестве Rx припаивается резистор с номиналом, подходящим ближе всего к измеренному. Как правило, при замене D1 или D2 возникает необходимость в замене Rx. Конденсатор С9 осуществляет частотную коррекцию усилителя. Он вызывает двойной эффект: осуществляет, с одной стороны, "запаздывающую" коррекцию при емкостной нагрузке коллекторов Т7 и Т8 и, с другой стороны, "опережающую", будучи подсоединенным не к земле, а к R21. Резистор R34 предотвращает возникновение двух различных петель заземления в том случае, когда два или более УМЗЧ питаются от одного блока питания. Земля на входе соединяется с металлическим корпусом или шасси и с предусилителем, а другие земли представляющие собой, по сути дела, возвратные провода для токов нуля, соединяются по отдельности с нулевой точкой блока питания.


Монтаж. Усилитель собран на двусторонней печатной плате, чертеж которой показан на рис.2-3. Со стороны деталей имеется сплошная фольга заземления. Зенковка в местах "входа" выводов деталей в плату предотвращает замыкания. Соединяющиеся с землей выводы деталей припаиваются непосредственно (без отверстий) к фольге заземления. На сборочном чертеже эти точки помечены черным цветом. Два оконечных полевых транзистора устанавливаются на уголки из алюминия, которые соединяются с радиатором, создавая тепловой мостик, и оба крепятся к плате. Их необходимо изолировать от уголков и платы. Имеющийся в цепи эмиттера резистор "висит в воздухе", поскольку установлен навесным монтажом. Резисторы R29 и R30 для укорачивания выводов припаиваются со стороны дорожек платы. Теплоотводы не должны образовывать с "нулевой" фольгой "ложную землю", поэтому "нулевая" фольга прерывается глубокой царапиной, идущей параллельно теплоотводам. Для нормального охлаждения полевых транзисторов достаточно охлаждающей поверхности около 400 см2. Транзисторы Т9 и Т10 крепятся к "нулевой" фольге через тонкую слюдяную пластину. Здесь очень легко может возникнуть короткое замыкание, поэтому монтаж нужно тщательно проверить омметром. Катушка L1 диаметром 10 мм состоит из примерно 15 плотно намотанных витков провода диаметром 0,5 мм (без сердечника). Резистор R33 расположен по оси L1, и его выводы спаиваются вместе с выводами катушки, а затем крепятся к плате. Три провода, идущие к блоку питания, скручиваются вместе. Два провода, ведущие к динамику, также скручиваются в отдельный жгут (независимо от предыдущих). Поскольку здесь текут большие токи, их магнитные поля могут значительно увеличить искажения - главным образом, на высоких частотах. Скручивание проводов вместе приводит к тому, что магнитные поля токов, текущих в противоположных направлениях, взаимно уничтожаются. Нулевая точка блока питания и вывод динамика не соединяются с корпусом, и идущие к ним провода не укладываются вместе с другими проводами.

Блок питания. Схема блока питания - самая простая (рис.4). Трансформатор, имеющий отвод от середины вторичной обмотки, питает двухполупериодный выпрямитель, состоящий из двух групп по 2 диода. Сглаживание пульсации осуществляют конденсаторы емкостью не менее 4700 мкФ (40 В). Такой блок может обеспечить питанием два оконечных усилителя.

Верхний предел напряжения вторичной обмотки трансформатора определяется типом использованных транзисторов Т7, Т8. В случае использования пары ВС 546/556, напряжение питания (в отсутствие сигнала) не должно превосходить 30...32 В. Более высокое напряжение эти транзисторы "переносят плохо". При напряжении питания ±30 В можно использовать трансформатор 220/2х22,5 В или 230/2х24 В. Усилитель с напряжением питания ±30 В может отдать в нагрузку мощность около 24 Вт (на 8 Ом). Полевые транзисторы, используемые в оконечном усилителе, очень дорогие. За цену одного такого транзистора можно приобрести весь остальной набор деталей. Невольно возникает вопрос- компенсируются ли излишки расходов ожидаемым улучшением качества. Ответ на этот вопрос зависит от многих обстоятельств, поскольку:

речь идет о субъективно воспринимаемых искажениях, поэтому звуковые ощущения у разных людей будут разными;

восприятие искажений зависит от воспроизводимой музыки. При воспроизведении чисто "авторской" электронной музыки не имеет смысла говорить об искажениях, ибо невозможно узнать, были или нет эти искажения в исходном материале;

проблематично воспроизведение музыки, поступающей с CD. По мнению "критических ушей" и автора, эта музыка имеет специфическую окраску. Воспроизведение же с хорошей аналоговой пластинки или непосредственно с концерта дает превосходное качество.

Спектр гармоник этого транзисторного усилителя подобран таким образом, что звучанием он напоминает старый добрый пентодный однотактник.

Последние 10 - 15 лет ругать звучание транзисторных усилителей и превозносить достоинства ламповых стало чуть ли не обязанностью аудиокритиков. Я думаю, что специфический саунд первых связан с чисто формальным подходом к их конструированию. Сейчас любой аудиофил, имеющий мало-мальский опыт прослушивания, знает, что параметры типа «0,002% гармонических искажений при 100 Вт мощности» в действительности мало что говорят о музыкальности аппарата. От чего же она зависит? Попробуем разобраться.

Вряд ли кто будет оспаривать факт, что ламповый триод - самый линейный элемент, который был изобретен человеком за последние сто лет. Транзисторам же, как биполярным, так и полевым, до него очень далеко. Но так ли все безнадежно?

Об авторе

Жан Цихисели. Несколько неожиданное сочетание имени и фамилии словно символизирует эклектичность жанров этого конструктора. В ассортименте лаборатории Time Wind, возглавлямой Жаном, самые разные проекты: усилители на триодах, пентодах в одно- и двухтактном включении и даже, не побоимся этого слова - на транзисторах. Относится к категории самородков, для которого самостоятельно изготовить конденсатор или намотать выходной транс плевое дело. Постоянный участник выставок «Российский Hi-End», в быту скромен, своего мнения никому не навязывает. Тем более, стоит прислушаться.

Оказывается, нет. Известно, что существует три типа усилительных каскадов на транзисторах: с общим эмиттером, с общим коллектором и с общей базой. Наиболее широко распространен первый тип, но он, к сожалению, имеет такие искажения, что ни о какой линейности говорить не приходится. Каскад с общим коллектором, или эмиттерный повторитель, значительно лучше, но его коэффициент усиления меньше единицы. Он обычно применяется в качестве согласующего, когда нужно получить большое входное сопротивление и малое выходное, в частности, для согласования громкоговорителя с усилителем напряжения. Оптимальным является каскад с общей базой - у него и искажения меньше, и полоса пропускания шире (из-за чего он часто используется в ВЧ-схемах), и усиление вполне приличное. В итоге в качестве кирпичиков для построения усилителя нам остаются лишь каскады с общим коллектором и общей базой. Идем дальше.

Те, кто знаком со схемами промышленных усилителей, вероятно, заметили, что количество транзисторов там может достигать сотни штук на один канал. Проходя через каждый р-n переход, сигнал деградирует, так что напрашивается вывод: для построения действительно качественного усилителя необходимо использовать их минимально возможное количество, и я думаю, вряд ли кто с этим не согласится. Теперь поговорим об обратной связи. То, что лучше обойтись без нее, знают, пожалуй, все, но природа транзисторных усилителей такова, что вряд ли это возможно. Единственное, что нам по силам, - сделать глубину ОС минимально необходимой.

Теперь коротко о режимах работы транзисторов. Даже при беглом анализе их выходных характеристик легко убедиться, что только в классе А они обладают наибольшей линейностью. Но в природе за все приходится платить, и вот вам пример: выходной каскад на комплементарной паре биполярных транзисторов, включенный в классе А, из-за перегрева выходит из строя через несколько секунд. Чтобы такая схема была работоспособна, нужно вместо одной пары поставить 10, а это уже противоречит требованию использовать минимально возможное количество активных элементов. В большинстве случаев никакого выигрыша тут нет, и самое разумное - поставить выходной каскад в режим «форсированный АВ», и такая схема будет долговечной и надежной. А вот все остальные каскады должны работать в «чистом» классе А. Но и это еще не все. У каждого конкретного типа биполярного или полевого прибора существует оптимальный ток коллектора (стока), при котором он имеет максимальную линейность, и использовать его нужно именно в таком режиме. Все перечисленные требования являются необходимыми, но далеко не достаточными для достижения нашей единственной цели - хорошего звучания.

Еще одно, и весьма важное условие - правильный подбор элементной базы, а именно транзисторов, диодов, конденсаторов, резисторов, проводов и припоя.

После нескольких месяцев тестирования и слепого прослушивания было установлено, что наиболее подходящими для описываемой схемы являются следующие типы элементов: БСИТ (Bipolar Static Induction Transistor) - для входного каскада, генератора тока и усилителя напряжения; полевые транзисторы в качестве истокового повторителя, биполярные - в устройстве сдвига уровня и генераторе тока, предвыходном двухтактном каскаде и выходном двухтактном эмиттерном повторителе.

Рис. 1. Принципиальная схема усилителя.

Теперь о пассивных компонентах. Регулятор громкости следует взять качественный и надежный ALPS, постоянные резисторы углеродистые, С1-4, а в эмиттерных цепях выходных транзисторов - проволочные. Конденсаторы на входе и цепи обратной связи бумажные, К42-11, МБМ и т.д. Они могут показаться чересчур громоздкими, но применять другие типы я не рекомендую ввиду заметного ухудшения звучания. Если не удастся купить фирменные электролиты, то из отечественных лучше использовать К50-24.

Входной каскад на VT1, VT2 - однотактный дифференциальный усилитель с местной токовой обратной связью, нагруженный на генератор тока на VT3. C выхода дифкаскада сигнал поступает на затвор полевого транзистора VT4, включенного истоковым повторителем. С истока VT4 сигнал через устройство сдвига уровня VT5 KT9115A идет на усилитель напряжения VT6. Тот, в свою очередь, нагружен на генератор тока VT7 и два последовательно соединенных двухтактных эмиттерных повторителя на VT8, VT9, VT10 и VT11. Последовательно включенные диоды VD7 - VD10 задают ток покоя выходного каскада (примерно 0,2 А). Добавив еще один или несколько (пятый диод изображен на схеме пунктиром), можно увеличить ток покоя до 0,8 А и, таким образом, перевести каскад в класс А. Подбором резистора R7 устанавливают нулевой потенциал +/-10 мВ на выходе усилителя. Подстроечники применять здесь не рекомендуется, поэтому лучше подобрать нужное значение, припаивая параллельно резистору 470 Ом другой, большего или меньшего номинала.

Пары транзисторов VT2 и VT2, VT8 и VT9, VT10 и VT11 следует подобрать с одинаковым значением коэффициента усиления с точностью не хуже 1%. Для защиты акустических систем от постоянного напряжения на выходе усилителя служит специальное устройство (рис. 2).

Рис. 2

Для надежной работы схемы защиты конденсаторы С1, С2 лучше использовать оксидно-полупроводниковые танталовые серии К53.

Теперь несколько слов о блоке питания (рис. 3, стр. 14). В нем применен тороидальный трансформатор мощностью 200 - 250 ВА с экранной обмоткой, которую нужно заземлить. Чтобы активные сопротивления вторичных обмоток были одинаковыми, их лучше мотать в два провода и среднюю точку соединить с шасси толстым коротким проводом. В качестве выпрямительных диодов применены КД2994А с барьером Шоттки, обладающие высоким быстродействем. Электролитические конденсаторы типа К50-24, а шунтирующие - бумажные МБМ, БМТ. Если вы захотите оснастить усилитель устройством защиты, для его питания потребуется дополнительная обмотка на напряжение 18 В и ток около 300 мА, а также простейший выпрямитель со сглаживающим фильтром.

Рис. 3

При монтаже усилителя следует обратить внимание на качество соединительных проводов и припоя. Монтаж нужно вести медным проводом с сечением около 2 кв. мм, очень хорошо для этой цели подходят колоночные кабели стоимостью 30 - 40 руб. за метр. Из припоев могу посоветовать ПОС-61, он недорогой и купить его можно на любом радиорынке. Печатные платы лучше выполнить из фольгированного стеклотекстолита толщиной 2 мм и жестко закрепить на дне корпуса с помощью металлических втулок. Все транзисторы, кроме VT1, VT2, VT3, крепятся через изолирующие прокладки к дну корпуса, выполненного из алюминиевой плиты толщиной 10 мм, которая одновременно является и теплоотводом.

Большое влияние на звук оказывает и разводка «земляных» шин. Сигнальная и сильноточная земля должны быть присоединены к корпусу в одной точке, рядом с входными разъемами. Корпус следует сделать из немагнитного материала. Изготовленный в 1995 г. в лаборатории «Time Wind» по описанной выше схеме, усилитель продемонстрировал качество звучания, сравнимое со звучанием хорошего лампового пентодного двухтактника. Благодаря тщательно подобранному спектральному составу искажений усилитель выдает сочную середину, прозрачный верх и осязаемый бас.

У схемы есть еще одно очевидное достоинство - хорошая повторяемость и несложная настройка, поскольку предназначалась она для мелкосерийного производства в промышленных условиях.

Таблица 1. Детали усилителя
Сопротивления
R1 1k 1/4 w углерод
R2, R9 15k 1/4 w углерод
R3 8k2 1/4 w углерод
R4,R5 13 1/4 w углерод
R6 24k 1/4 w углерод
R7 150 1/4 w углерод
R8 200 1/4 w углерод
R10,R11 750 1/4 w углерод
R12 5k6 1 w углерод
R13 48 1/2 w углерод
R14 24 1/2 w углерод
R15, R16 100 2 w углерод
R17 18 2 w углерод
R19, R20 0,47 5 w проволочные
R21 10 2 w углерод
Конденсаторы
С1 2,2 мкФ МБМ, К42-11 (бумага)
С2 1000 пФ КСО, СГМ (слюда)
С3 3,9 пФ керамика
С4 22 мкФ МБМ, К42-11 (бумага)
С5 0,1 мкФ х 160 В МБМ, К42-11 (бумага)
С6,С9 1 мкФ х 160 В МБМ, К42-11 (бумага)
С7 - С11 2200 мкФ х 63 В К50-24
Полупроводники
VD1 - VD10 КД522Б
VT1 - VT3 КП959А БСИТ
VT4 КП902А КМОП
VT5, VT7 КТ9115А биполярный
VT6 КП956А БСИТ
VT8 КТ850А биполярный
VT9 КТ851А биполярный

Литература:
1. П. Хоровиц, У. Хилл. «Искусство схемотехники», Москва, «Мир», 1993 г.
2. Н.В. Пароль, С.А. Кайдалов. «Фоточувствительные приборы и их применение». Издательство «Радио и Связь», 1991 г.

При создании усилителей большой мощности в выходном каскаде приходится применять параллельное включе­ние специально подобранных и согласованных групп тран­зисторов, что заметно усложняет и удорожает изготовление усилителя. Гораздо проще и дешевле использовать в этом каскаде лидеров по коэффициенту усиления и мощно сти - биполярные транзисторы с изолированным затвором (IGBT ), так как отпадают вопросы подбора и установки групп тран­зисторов. Но считается, что такие транзисторы могут рабо­тать только в переключательных режимах. К тому же среди них практически нет комплементарных пар.

В настоящее время сложилось устойчивое мнение, что только каскады с симметричным выходом на комплементар­ных транзисторах способны обеспечить высокие параметры УМЗЧ . Это происходит из-за того, что практически все они повторяют топологию разработанную Лином на фирме RCA еще в 1956 г., - входной дифференциальный каскад, второй каскад усиления напряжения и выходной симметричный двух­тактный каскад - усилитель тока . Но эта структура далеко не оптимальна, если одно из плеч выходного каскада пост­роено по схеме Шикпаи, как это бывает при конструирова­нии УМЗЧ с мощными транзисторами одинаковой проводи­мости.

Главная проблема усилителя с выходным каскадом на транзисторах одинаковой проводимости - это потенциаль­ная неустойчивость порождаемая тем, что одно из плеч вы­ходного каскада охвачено местной отрицательной обратной связью. В результате существенно различаются фазо-частотные характеристики плеч. А это порождает звон и пара­зитную генерацию в выходном каскаде и требует дополни­тельной коррекции, симметрирующей такой выходной кас­кад, что снижает общую частоту среза УМЗЧ и приводит в итоге к повышению искажений . Хотя такие схемы у конст­рукторов энтузиазма не вызывают, тем не менее, транзис­торы одинаковой проводимости широко используются в вы­ходных каскадах мощных микросхем УМЗЧ в силу дешевиз­ны производства. Конечно, среди биполярных транзисторов комплементарных пар достаточно много, и трудности возни­кают только с подбором пар комплементарных транзисто­ров группы IGBT , привлекательность использования которых очевидна. Это сдерживает применение таких транзисторов, при их неоспоримых достоинствах перед биполярными и по­левыми транзисторами .Существуют мостовые схемы мощ­ных каскадов, в которых не требуются комплементарные пары транзисторов. Но они довольно сложны, и в них слож­но использовать эффективную обратную связь , в результа­те мостовые схемы не получили широкого распространения, кроме автомагнитол, где их используют из-за ограниченного напряжения питания.

Рассмотрим отдельно несимметричный двухтактный вы­ходной каскад на IGBT (рис. 1), когда верхний транзистор включен по схеме с общим коллектором а нижний транзи­стор- по схеме с общим эмиттером .

Зависимость выход­ного напряжения от тока управления для верхнего транзис­тора составит: U H = l э (1+R 3 * S ) *R н, а для нижнего транзистора - U H = l э * R 3 * S *R H . Можно заметить, что эти зависимости выход­ного напряжения очень близки, и при равном значении кру­тизны и большом сопротивлении резисторов в цепи затвора (R 1, R 2) выходной каскад практически симметричен. Но сим­метрия и линейность - это разные свойства. А замечатель­ное свойство этой схемы в том, что различие крутизны тран­зисторов можно компенсировать подбором резисторов. Та­кая симметрия недостижима для комплементарных полевых транзисторов. Различие крутизны у комплементарных пар полевых транзисторов достигает 300%, примерно такая же разница и их входной емкости.

Конечно, симметрия высока только на низких частотах, какими представляют и звуковые частоты. Задача состоит в том, чтобы построить схему с сохранением симметрии в наи­более широком диапазоне частот. И здесь топология Лина уже не является оптимальной .

Но вернемся к схеме на рис. 1. Недостаток каскада зак­лючается в том, что для каждого плеча требуется свой гене­ратор сигнала, и в результате возникают трудности с обес­печением термостабильности тока покоя каскада. Гораздо удобнее схема возбуждения каскада на рис. 2. Привлекатель­ность ее в том, что теперь не требуются два источника сигна­ла, и управление таким каскадом гораздо проще. Более того, здесь изменение сопротивления источника сигнала R изме­няет ток от источника тока к резисторам в цепи затворов транзисторов, причем изменение сопротивления R r приво­дит к противофазному изменению напряжения на затворах транзисторов. При увеличении Rr отпирается верхний тран­зистор и запирается нижний, при уменьшении Rr запирает­ся верхний транзистор и отпирается нижний. Суммарное зна­чение токов на затворных резисторах, при любом значении Rr , остается неизменным и определяется источником тока. ,,, То есть, здесь осуществляется преобразование входного сиг­нала в управляющий симметричный противофазный ток, но в десятки раз различающееся управляющее напряжение, для верхнего и нижнего плеча несимметричного выходного кас­када, что необходимо для управления несимметричным вы­ходным каскадом. Так реализуется двухтактный режим ра­боты мощного несимметричного выходного каскада . Началь­ный ток выходных транзисторов и термостабилизация тока покоя достигается изменением тока одного источника тока, так как при уменьшении тока источника тока запираются оба транзистора.

Построение выходного каскада на транзисторах одина­ковой структуры проводимости по предлагаемой схеме дос­таточно привлекательно простотой, особенно при большой выходной мощности усилителя (более 100 Вт), когда IGBT - транзисторы имеют ряд преимуществ перед биполярными и полевыми транзисторами. К тому же, по мнению разработ­чиков фирмы PLINIUS звучание с усилителями на транзис­торах п-р-п структуры лучше, чем на транзисторах р-п-р струк­туры, и в дорогих моделях они предпочитают асимметрич­ный выходной каскад . Объясняют это тем, что транзисто­ры предпочтительной структуры более линейны и имеют луч­шие частотные свойства, а также больший коэффициент уси­ления.

Для эффективного использования IGBT , а также поле­вых транзисторов одинаковой проводимости мною предла­гается новая структура УМЗЧ - входной каскодный уси­литель далее составной каскад на транзисторах разной про­водимости с источником тока и стабилитроном и, наконец, двухтактный несимметричный выходной каскад с транзис­торами одинаковой структуры. Эта структура с вольтдобавко й и вспомогательными цепями показана на рис. 3. Новая структура создает самый короткий путь прохождения сигна­ла к нижнему транзистору, который имее т наихудшие час­тотные свойства и, несмотря на простоту, имеет большой общий коэффициент усиления.

Рассмотрим схему на рис. 3 подробнее. Входной сигнал, через резистор R 1, определяющий входное сопротивление усилителя, поступает на базу транзистора VT 1. Включение этого транзистора в каскоде позволяет использовать на вхо­де низковольтный высокочастотный малошумящий транзи­стор и нейтрализовать эффект Миллера, а также уменьшить влияние синфазного напряжения. Транзистор VT 2 должен выдерживать требуемое напряжение, т.е . быть относитель­но высоковольтным. Использование "сломанного каскода", вместо обычного, защищает транзисторы VT 1 и VT 2 от про­боя, так как при перегрузке входным сигналом рост тока VT 1 и VT 2 ограничен резистором R 3.

Использование дифференциального входного усилителя вместо каскодного приведет к уменьшению крутизны вход­ного каскада в два раза и увеличению шума входного каска­да на 2 дБ, а это, в конечном счете, приведет к росту искаже­ний. Также появится необходимость в подборе пары вход­ных транзисторов.

С выхода каскодного усилителя сигнал поступает на со ставной каскад на транзисторах VT 3 VT 4, которые осуще­ствляют функцию Rr . Эти транзисторы включены по струк­туре ОБ-ОЭ с объединением по эмиттерам, что является оп­тимальным для выбора и использования транзисторов. Ко­эффициенты усиления по напряжению и по мощности тран­зисторов VT 3 и VT 4 сильно различаются, это требует приме­нения в качестве VT 3 высоковольтного транзистора средней мощности, частотные свойства которых, как правило, гораздо хуже маломощных низковольтных транзисторов. Поэто­му включение его в режиме ОБ более эффективно, чем в режиме ОЭ. Усиление по напряжению для VT 4 не столь ве­лико, как для VT 3. Поэтому включение его в режим ОЭ не слишком сильно ухудшит общую АЧХ.

Выбор подходящего дешевого высоковольтного транзистора п-р-п структуры для VT 3 не вызывает проблем, а транзистор VT 4 - низковольтный маломощный р-п-р структуры из высокочастотных транзисторов широкого применения.

Полевые транзисторы в качестве VT 1 ...VT 4 использовать нецелесообразно, так как они имеют меньшую крутизну, чем биполярные транзисторы, что будет эквивалентно снижению усиления каскадов и линейности усилителя в целом.

С целью увеличения максимальной амплитуды напряже­ния для полупериодов плюсовой полярности введена вольт- добавка в виде цепи R 6, С1. Хотя вместо вольтдобавки мож­но применить дополнительное питание, что расширит диа­пазон работы усилителя в область низких частот. Стабилитрон VD 1 компенсирует остаточное падение напряжения на транзисторах VT 3, VT 4 в полупериоды минусовой полярно сти и тем самым уменьшает напряжение насыщения по мину­су питания.

Применение параллельной ООС, вместо более распрос­траненной последовательной ООС, делает усилитель менее чувствительным (в части линейности) к изменению сопро­тивления источника сигнала. Так, при его увеличении нели­нейные искажения усилителя не возрастают как это происходит при использовании последовательной ООС .

Замечательным свойством предлагаемой структуры яв­ляется "естественное" ограничение максимального выходного тока . Дело в том, что напряжение на резисторах R 5, R 7 мо­жет максимально принимать только удвоенное значение от первоначального, и выбором сопротивления эмиттерных резисторов R 8, R 9 можно ограничить максимальный ток тран­зисторов, рассчитав его по формуле: Imax = (2 U нач – Umax )/R э,

где U нач - напряжение затвор-эмиттер транзисторов VT 5, VT 6, при котором через транзисторы течет заданный началь­ный ток; Umax - напряжение затвор-эмиттер транзисторов VT 5, VT 6 при протекании через них максимального тока; R э - сопротивление резисторов R 8, R 9.

Благодаря тому, что максимальное напряжение на рези­сторах R 5, R 7 не превышает удвоенного значения от началь­ного (например: если U зэ нач 5,7 В, то U зэ max = 11,4 В), нет смысла устанавливать защиту затворов от перенапряжения . А так как токи всех приборов усилителя ограничены, нет не­обходимости в дополнительных схемах защиты каскадов, что заметно упрощает усилитель.

На практике напряжение затвор-эмиттер транзисторов при протекании через них максимального тока заранее не известно, поэтому экспериментальным подбором R э осуще­ствляется выбор I max .

Как нетрудно заметить, R 8 и R 9 выполняют не только ограничительную, но и линеаризующую функцию для VT 5 и VT 6, создавая местную ООС в сам их нелинейных эле­ментах.

Вариант практической схемы реализации мощного УМЗЧ приведен на рис. 4.

Как видно из приведенных параметров технических ха­рактеристик, описываемый усилитель не уступает по каче­ству лучшим усилителям с симметричной структурой, и та­кая высокая выходная мощность реализована всего на вось­ми транзисторах! Неплохой результат при затратах на комп­лектующие порядка 10 USD , с учетом того, что не нужен под­бор и отбор групп транзисторов. И вообще схема является одной из лучших по соотношению затраты/качество.

Наиболее подробно особенности работы УМЗЧ можно описать по полной схеме (рис. 4) следующим образом . Вход­ной сигнал, через цепь С1, R 1, задающую нижнюю гранич­ную частоту и входное сопротивление, поступает на базу тран­зистора VT 1. В качестве входного в ыбран СВЧ транзистор КТ368А (для быстрого выхода из насыщения после перегруз­ки при ограничении вы­ходного сигнала). На базу этого же транзис­тора поступает сигнал обратной связи через цепь С2, R 3.

Цепь СЗ , R 2, R 4 , R 7 предназначена для ус­тановки нулевого на­пряжения смещения на выходе усилителя . Так как подстроечный ре­зистор R 7 со временем может изменить сопро­тивление, вместо него лучше установить по­добранный при настройке постоянный резистор. Диоды VD 2 и HL 1 задают смещение на базу транзистора VT 2 и одновременно осуществляют термо­компенсацию нулевого напряжения на выходе усилителя за счет одинаковых тепло­вых коэффициентов транзистора VT 1 и диода VD 2 (он же задает напряжение смещения по цепи R 2, R 4, R 7).

Конденсатор С4 осуществляет коррекцию входного кас­када. С коллектора VT 1 сигнал через VT 2 поступает на базу эмиттерного повторителя на транзисторе VT 3. Его задача - повышение входного сопротивления и тем самым повыше­ние общего усиления, а также ускорение запирания транзи­стора VT 5 и нейтрализация эффекта Миллера. Стабилитрон VD 3 увеличивает напряжение питания для VT 3 и тем ускоря­ет запирание транзисторов VT 4, VT 5, увеличивая скорость переднего фронта.

С эмиттера VT 3 сигнал поступает на базу транзистора VT 5. Цепь L 1, R 13 осуществляет коррекцию составного кас­када на транзисторах VT 4 и VT 5. С коллектора транзистора VT 5 сигнал поступает на затвор выходного транзистора ниж­него плеча . С коллектора транзистора VT 4 аналогичный, но противофазный токовый сигнал поступает через стабилитрон VD 7 на затвор выходного транзистора верхнего плеча.

Цепь R 11, С7 в базе VT 4 осуществляет инклюзивную коррекцию выходного каскада, повышающую устойчивость усилителя в режиме ограничения. Цепи С 10, R 22 и L 2, R 24 повышают устойчивость усилителя при изменении сопротив­ления нагрузки и при ее емкостном характере .

Диод VD 8 уменьшает в два раза тепловую мощность, рас­сеиваемую на резисторе R 20, за счет того, что по нему течет только ток зарядки конденсатора С8. Ток покоя выходного каскада, равный 0,2 А, выставляют подстроенным резисто­ром R 17.

Для термостабилизации тока покоя УМЗЧ диоды VD 5 и VD 6 устанавливают на теплоотвод рядом с выходными тран­зисторами. Транзисторы VT 4, VT 6 снабжают небольшими пластиночными теплоотводами, так как рассеиваемая ими тепловая мощность достигает 0,8 Вт. Светодиод HL 2 исполь­зуется для задания смещения источника тока на транзисторе VT 6 и одновременно для индикации включения усилителя.

Выходные транзисторы необходимо установить на ради­аторе площадью не менее 3000 см 2 . Применение вентилято­ра позволит резко сократить его размеры, что заметно умень­шит габариты и вес усилителя.

При первом включении усилителя для защиты выходных транзисторов резисторы R 19 и R 23 рекомендуется заменить более высокоомными (до 3 10 Ом), и лишь после проверки напряжения на затворах можно установить соответствующие схеме 0,1 0м и выставить ток покоя. При этом для IRG 4PC 30W напряжение U зэ = 5,7 В.

Как видно из полной схемы (рис. 4), в усилителе приме­нена довольно сложная коррекция АЧХ (четыре конденсато­ра и дроссель, не считая резисторов). Это небольшая плата за то, чтобы несимметричная структура вела себя не хуже симметрично й (с комплементарными приборами) и получить высокую устойчивость усилителя в зоне ограничения . Мож­но сказать, что первая проблема достижения малых искаже­ний после выбора структурной схемы - это проблема выбо­ра коррекции АЧХ усилителя создающей необходимый за­пас устойчивости усилителя при большом изменении выход­ных токов и напряжений, и в то же время обеспечивающей минимальную фазовую задержку в рабочем диапазоне час­тот. В большинстве случаев именно коррекция становится определяющей, сводя на нет достоинства многих схем .

Разработчик всегда находится перед дилеммой - увели­чить ли глубину общей ООС для улучшения линейности уси­лителя или уменьшить ее глубину, чтобы увеличить запас устойчивости, который необходим, если сопротивление АС имеет сложный характер. И если усилители звучат по-раз­ному, то в большой степени это связано с запасом устойчи­вости, который очень заметно проявляется на больших уров­нях . Именно поэтому УМЗЧ с "простыми" схемами часто показывают лучшие результаты, чем имеющие сложную (ча­сто на микросхемах) структуру. А каждый новый каскад дол­жен вводиться после тщательных испытаний эффективнос­ти нов ых элементов. Тем более, что увеличение глубины ООС в большинстве случаев не дает желаемого результата, а лишь ухудшает запас устойчивости. И тут на первый план выхо­дит правильная оценка критериев линейности и динамичес­кой устойчивости усилителя, которые в свою очередь зави­сят от грамотной коррекции. Причем грамотная коррекция должна минимизировать фазовую задержку в рабочем диа­пазоне частот, не ухудшая общую устойчивость. Часто го­раздо эффективней хорошая коррекция, чем новый каскад.

Конечно, выбранный способ баланса нуля на выходе уси­лителя далеко не лучший, и он привлекателен лишь своей простотой. На выходе УМЗЧ может возникать "плавающее" смещение до нескольких десятков милливольт, но оно не ска­зывается заметно ни на звуке, ни на рабочей точке выход­ных транзисторов. Для уменьшения же ухода "нуля" полезно ввести узел слежения на прецизионной микросхеме, пусть это и усложнит усилитель.

Примененные транзисторы IRG 4PC 30W недороги, но они имеют заметную нелинейность на начальном участке и боль­шую входную емкость. Если проверить весь ряд серий IGBT , предлагаемых изготовителями, то наверняка можно найти приборы с большей линейностью и меньшей входной емкос­тью. У автора не было возможности провести такую работу. С предложенными транзисторами можно улучшить линей­ность в два раза увеличением тока покоя до 0,5 А, но это потребует увеличения площади радиатора.

В заключение хочу отметить, что если нет потребности в большой мощности усилителя, то вполне можно использо­вать на выходе вместо IGBT транзисторов полевые транзис­торы с изолированным затвором и каналом n -типа, линей­ность которых заметно выше. Усилитель получит более вы­сокую линейность, при этом надо только подобрать резисто­ры для другого напряжения питания и стабилитроны для дру­гого напряжения затвора. Уменьшенный по мощности ана­лог УМЗЧ на полевых транзисторах, соответствующий при­веденной здесь схеме, успешно эксплуатируется автором в течение шести лет, доставляя массу приятных минут при про­слушивании в домашних условиях разного рода музыкаль­ных программ.

Литература

1. Данилов А.А. Прецизионные усилители низкой часто­ты М Горячая линия - Телеком, 2004.

2. Козырев В Усилители " Krell KAV -4- xi ", " Audio Analogue Maestro ", " Plinius 9200". - Аудио Магазин, 2003, №6, с. 71,72.

3. Шпак С.В. Патент RU №2316891 от 10.04.2006.

4 Дуглас Селф о ранее не замеченном источнике иска­жений транзисторных УМЗЧ с общей ООС - Радиохобби, 2003, №3, с. 10,11.

5. Витушкин А., Телеснин В. Устойчивость усилителя и естественность звучания. - Радио 1980, №7, с 36,37.

Сергей Шпак г.Казань Татарстан

P.S. На сайте уже поднималась тема редакционных ошибок, здесь ещё один пример такой ошибки: -

Vovk@